Initiation of growth of baboon primordial follicles in vitro.
نویسندگان
چکیده
Factors that cause some primordial follicles to enter the growth phase while the others remain quiescent are unknown. The hypothesis was tested that primate primordial follicles can survive and initiate growth in vitro in serum-free medium. Superficial pieces of ovarian cortex, containing mostly primordial follicles, were obtained from baboon fetuses during late gestation and cultured for 0, 2, 4, 7, 10 or 20 days in Waymouth MB 752/1 medium supplemented with insulin, transferrin, selenium, linoleic acid, and bovine serum albumin (ITS +). Histological examination of cortical pieces revealed that after 2 and 4 days in culture, the total number of primordial follicles had decreased by 55 and 76% (P < 0.01) respectively, relative to day 0 of culture. This was associated with a sustained, 5- to 8-fold increase in total primary follicles (P < 0.01) beginning on day 2 of culture. There was also a gradual increase in the total number of early secondary and secondary follicles. The average diameter of follicles and oocytes increased gradually throughout culture for all follicular categories (P < 0.01), except secondary follicles and oocytes. Immunohistochemical localization of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation and growth, showed that PCNA was generally absent in primordial follicles on day 0, but was observed after 2 or 4 days in culture in both granulosa cells and oocytes of most growing follicles. Comparison of cortical pieces cultured for 10 or 20 days with ITS + versus 10% fetal bovine serum (FBS) showed a more pronounced decrease in the numbers of primordial follicles and more primary, early secondary and secondary follicles in ITS + compared to FBS-treated cortical pieces (P < 0.01 at 20 days). These results show that primordial follicles from non-human primates can survive and develop to the secondary stage in vitro in serum-free conditions.
منابع مشابه
I-6: Follicle Development in Culture of Frozen / Thawed Human Ovarian Tissue
The primary therapeutic goal for the oncology patient is survival. Recent advances in diagnoses and treatment of neoplasia have resulted in an ever-increasing number of patients being cured and resuming a normal life. However, recognized side effects of treatments used to eradicate malignancies are temporary or permanent sterility. The cryopreservation of ovarian tissue harvested before cancer ...
متن کاملRole of Follicle Stimulating Hormone in the Survival, Activation and Further Growth of in vitro Cultured Sheep Primordial Follicles
The aim of the present study was to investigate the effect of follicle stimulating hormone (FSH) on survival, activation and growth of ovine primordial follicles using histological studies. Pieces of ovine ovarian cortex were obtained and cultured for 6 days in Minimum Essential Medium supplemented with or without FSH (50 ng/mL). These fragments were then process to be used for histology compar...
متن کاملThe primordial to primary follicle transition.
The mechanisms that regulate the gradual exit of ovarian follicles from the non-growing, primordial pool are very poorly understood. A better understanding of the signals that initiate follicular growth in mammals, and of the conditions necessary for sustained growth of early preantral follicles in vitro, could have practical implications for contraception, alleviation of infertility, and regul...
متن کاملP-52: Brain-Derived Neurotrophic Factor Promotes The Development of Human Ovarian Early Follicles during Growth In Vitro
Background Cryopreservation of ovarian cortex is increasingly used to preserve fertility before cancer therapy. Recently, studies show that Brain-derived neurotrophic factor (BDNF) may be involved in oocyte maturation. Brain-derived neurotrophic factor (BDNF) is member of neurotrophin family that has anti-apoptotic effects on nervous system. Recent researches show that it also plays key role in...
متن کاملP-170: Animal Models of Human Artificial Ovary, Valuable Tools for Fertility Preservation in Cancer Patients
Background: With all the recent advances in cancer treatments, many young cancer patients find themselves facing the prospect of losing their fertility after aggressive chemotherapy or radiotherapy. Cryopreservation of ovarian cortical tissue has emerged as a potential option to restore fertility in these young women. Materials and Methods: Because autotransplantation of cryopreserved ovarian c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human reproduction
دوره 12 9 شماره
صفحات -
تاریخ انتشار 1997